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‘ Networked Embedded Systems
Technology (NEST)

“ Large volume fabrication of compact autonomous nodes
“ Have limited resources and communication capabilities
“ Large number of densely deployed processing nodes

= Tightly coupled to physical processes
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NEST applications

Equipment and process control
2 Avionics

Environment monitoring

2 Pollution

9 Chem/bio agent detection

Target detection and classification
9 Acoustic and seismic beamformation
0 Target localization

Smart structures
9 Acoustic sensing
3 Vibration control
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NEST middleware

Kind of distributed operating system that
provides global services to the application
The middleware must be

2 application specific

2 programming language and platform specific
2 highly configurable

Currently, the middleware is written and
verified for each application and platform
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Our approach

Automatically synthesize
the middleware from
abstract models

Capture the temporal and - W S
computational aspects of oS d
distributed algorithms in a ey unpack

programming language and
platform independent way
Focus on composition and

verification of middleware init reset
components

clock
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Asynchronous I/O automata

Mathematical specifications of distributed
algorithms

Extensively used In the literature for the
formal representation, verification and
analysis of reactive systems [Lynch].

Theoretical methods and results describing
the interaction and refinement of
asynchronous I/O automata.
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The I/O automaton A

states(A), a nonempty set of states
start(A), a nonempty subset of states(A)

acts(A), a set of actions, partitioned into three
sets: in(A), out(A) and int(A), the set of input,
output and internal actions

trans(A), a state-transition relation, where
trans(A) C states(A)xacts(A)*states(A)

tasks(A), a partition of out(A) U int(A)
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Execution of I/O automata

The execution of A Is a sequence s, a,, s,, a,
s,.... Of states and actions such that s, Is a
start state, and (s, a, s.) are transitions of A

/O automata are input enabled: input actions
can occur in every state

The execution order of locally controlled
actions Iis nondeterministic
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/O automata specifications in
practice

States are described in terms of a list of state
variables and their initial values, that is, states(A) =
Dx...xD

Actions are grouped into logically coherent action
groups, that is, acts(A) = G,U...U G,

Each action group is parameterized, described in
terms of action parameters:
G=E, x..xE,

Transitions are described in a mathematical pseudo-
code accessing state variables and action
parameters (preconditions and effects)
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Focusing on structure

The sets of states, actions and transitions are
naturally structured in practice

The pseudo-code describing the transition
relation can be very complex and
nondeterministic

We minimize the complexity of the pseudo
code by introducing more complicated
compositional operators of I/O automata
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Structured sets and data

ports

The following are structured sets
2 The domains of basic datatypes

2 Finite products of structured sets

2 Disjunct unions of structured sets

2 Finite powers of structured sets

J The Kleene star of structured sets

We can formally define data ports of
structured sets that provide read and write
access to limited parts of the structured set.
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Structural model of I/O

automata

states(A) IS a structured set

acts(A) Is a structured set

in(A) and out(A) are data ports of acts(A)
value(A), a data port of states(A)

trans(A), only sim
3 Preconditions: on

nle transitions are allowed:
y simple comparisons

2 Effects: only simp
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Compositional operators of
structural I/O automata

Variable: most basic building block

Activator: introduces new simple state-
transitions

Product: composition of automata
Union: alternative implementations
Power: implements arrays

Black Box: wrappers around existing
services
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Case study: cooperative acoustic
tracking

Running on the Berkeley mote platform and the
TinyOS operating system
Two kinds of motes

2 Active tags: sends radio and sound signal

9 Trackers: receive radio and sound signal, compute time of
flight of the sound, estimate distance

Track table middleware service: maintain a table of
all measurements at each tracker

Based on the content of the track table, a local
algorithm computes the location of the tags
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TinyOS overview

The MICA and RENE
hardware platforms (University
of California, Berkeley)

Event based operating
environment for embedded
networked sensors

Two-level (non-preemptive)
scheduling: events and tasks

Components: event and
command handlers, fixed
memory frames

The operating system /
application is a collection of
statically linked interacting
components.
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Generic Modeling Environment
(GME)

Configurable toolkit for creating domain-
specific modeling and program synthesis
environment

Configuration is through a (UML based)
metamodel specifying the syntactic, semantic
and presentation information of the domain.

A graphical model builder is used to build
application models

Domain specific synthesizers
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‘ Distributed Services Composition
and Synthesis Technology
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Case study: vibration control

Acoustic damping of vibration in a fairing

SIESTA: simulator implemented in Java that
uses a simplified 1/O automata-based
middleware

We used the same modeling environment
(DISSECT) as before, but with a different
conde synthesizer

We modeled the broadcast and routing
components
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Conclusion

It iIs possible to model distributed middleware
services in a platform nutral and
programming language independent way

It iIs possible to automatically synthesize the
distributed middleware from generic models
using platform dependent code synthesizers

Middleware service composition needs better
support: a lot of research is still to be done
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