Distributed Middleware
Services Composition and
Synthesis Technology

Miklos Mardti, Peter VOlgyesi, Gyula Simon,
Gabor Karsai and Akos Lédeczi

Institute for Software Integrated Systems,
Vanderbilt University

Outline

Introduction

Asynchronous I/O automata
Structured sets and data ports
Structural model of I/O automata

Case study

9 TinyOS: cooperative acoustic tracking
4 Siesta: routing in vibration control simulation

Conclusion

March 10, 2003 2

‘ Networked Embedded Systems
Technology (NEST)

“ Large volume fabrication of compact autonomous nodes
“ Have limited resources and communication capabilities
“ Large number of densely deployed processing nodes

= Tightly coupled to physical processes

March 10, 2003 3

NEST applications

Equipment and process control
2 Avionics

Environment monitoring

2 Pollution

9 Chem/bio agent detection

Target detection and classification
9 Acoustic and seismic beamformation
0 Target localization

Smart structures
9 Acoustic sensing
3 Vibration control

March 10, 2003

NEST middleware

Kind of distributed operating system that
provides global services to the application
The middleware must be

2 application specific

2 programming language and platform specific
2 highly configurable

Currently, the middleware is written and
verified for each application and platform

March 10, 2003 5

Our approach

Automatically synthesize
the middleware from
abstract models

Capture the temporal and - W S
computational aspects of oS d
distributed algorithms in a ey unpack

programming language and
platform independent way
Focus on composition and

verification of middleware init reset
components

clock

March 10, 2003 6

Asynchronous I/O automata

Mathematical specifications of distributed
algorithms

Extensively used In the literature for the
formal representation, verification and
analysis of reactive systems [Lynch].

Theoretical methods and results describing
the interaction and refinement of
asynchronous I/O automata.

March 10, 2003 7

The I/O automaton A

states(A), a nonempty set of states
start(A), a nonempty subset of states(A)

acts(A), a set of actions, partitioned into three
sets: in(A), out(A) and int(A), the set of input,
output and internal actions

trans(A), a state-transition relation, where
trans(A) C states(A)xacts(A)*states(A)

tasks(A), a partition of out(A) U int(A)

March 10, 2003 8

Execution of I/O automata

The execution of A Is a sequence s, a,, s,, a,
s,.... Of states and actions such that s, Is a
start state, and (s, a, s.) are transitions of A

/O automata are input enabled: input actions
can occur in every state

The execution order of locally controlled
actions Iis nondeterministic

March 10, 2003 9

/O automata specifications in
practice

States are described in terms of a list of state
variables and their initial values, that is, states(A) =
Dx...xD

Actions are grouped into logically coherent action
groups, that is, acts(A) = G,U...U G,

Each action group is parameterized, described in
terms of action parameters:
G=E, x..xE,

Transitions are described in a mathematical pseudo-
code accessing state variables and action
parameters (preconditions and effects)

March 10, 2003 10

Focusing on structure

The sets of states, actions and transitions are
naturally structured in practice

The pseudo-code describing the transition
relation can be very complex and
nondeterministic

We minimize the complexity of the pseudo
code by introducing more complicated
compositional operators of I/O automata

March 10, 2003 11

Structured sets and data

ports

The following are structured sets
2 The domains of basic datatypes

2 Finite products of structured sets

2 Disjunct unions of structured sets

2 Finite powers of structured sets

J The Kleene star of structured sets

We can formally define data ports of
structured sets that provide read and write
access to limited parts of the structured set.

March 10, 2003 12

Structural model of I/O

automata

states(A) IS a structured set

acts(A) Is a structured set

in(A) and out(A) are data ports of acts(A)
value(A), a data port of states(A)

trans(A), only sim
3 Preconditions: on

nle transitions are allowed:
y simple comparisons

2 Effects: only simp

March 10, 2003

e assignments

13

Compositional operators of
structural I/O automata

Variable: most basic building block

Activator: introduces new simple state-
transitions

Product: composition of automata
Union: alternative implementations
Power: implements arrays

Black Box: wrappers around existing
services

March 10, 2003 14

Case study: cooperative acoustic
tracking

Running on the Berkeley mote platform and the
TinyOS operating system
Two kinds of motes

2 Active tags: sends radio and sound signal

9 Trackers: receive radio and sound signal, compute time of
flight of the sound, estimate distance

Track table middleware service: maintain a table of
all measurements at each tracker

Based on the content of the track table, a local
algorithm computes the location of the tags

March 10, 2003 15

TinyOS overview

The MICA and RENE
hardware platforms (University
of California, Berkeley)

Event based operating
environment for embedded
networked sensors

Two-level (non-preemptive)
scheduling: events and tasks

Components: event and
command handlers, fixed
memory frames

The operating system /
application is a collection of
statically linked interacting
components.

March 10, 2003

application

Ad hoc Routing Application

‘* 4 ¥ i
ot VWY 00wy 0 H

adio Packe
sSwW
byte vy % 5'"\'1'1 """" %%mﬁ\ iy T aw
adio e i oto

bit ~ ¥¥¥

16

Generic Modeling Environment
(GME)

Configurable toolkit for creating domain-
specific modeling and program synthesis
environment

Configuration is through a (UML based)
metamodel specifying the syntactic, semantic
and presentation information of the domain.

A graphical model builder is used to build
application models

Domain specific synthesizers

March 10, 2003 17

‘ Distributed Services Composition
and Synthesis Technology

TRACK_TABLE I

guard out_pr.counter < newentry_pr.counter
newentry_pr.nodelD == index

in_pr.counter = newentry_pr.counter

~

10l
atol

unpack

DDStore

thimgr
=-%* Track_table

-8 TRACK_TABLE
&/ DDStore.
--#] aging
=8 clock

- tick

ckdisp

DDStore

[Cormponent 5 courter
- in_pr
- aut_pr
i@} strength
&nwe —’Lﬁ updi&) newentry

[—-—]) counter

update - newentry_pr
newentry update %! nodelD
@} strength
& update
-] update
-8 counter
-} nodelD
i@, strength
i@ update_pr
o- Tl ckdisp
74 clock
-1 display
- init
71 pack
03l rov
514 reset

March 10, 2003 18

Case study: vibration control

Acoustic damping of vibration in a fairing

SIESTA: simulator implemented in Java that
uses a simplified 1/O automata-based
middleware

We used the same modeling environment
(DISSECT) as before, but with a different
conde synthesizer

We modeled the broadcast and routing
components

March 10, 2003 19

Conclusion

It iIs possible to model distributed middleware
services in a platform nutral and
programming language independent way

It iIs possible to automatically synthesize the
distributed middleware from generic models
using platform dependent code synthesizers

Middleware service composition needs better
support: a lot of research is still to be done

March 10, 2003 20

	Distributed Middleware Services Composition and Synthesis Technology
	Outline
	Networked Embedded Systems Technology (NEST)
	NEST applications
	NEST middleware
	Our approach
	Asynchronous I/O automata
	The I/O automaton A
	Execution of I/O automata
	I/O automata specifications in practice
	Focusing on structure
	Structured sets and data ports
	Structural model of I/O automata
	Compositional operators of structural I/O automata
	Case study: cooperative acoustic tracking
	TinyOS overview
	Generic Modeling Environment (GME)
	Distributed Services Composition and Synthesis Technology (DISSECT)
	Case study: vibration control
	Conclusion

