
Distributed Middleware
Services Composition and
Synthesis Technology

Miklós Maróti, Péter Völgyesi, Gyula Simon,
Gábor Karsai and Ákos Lédeczi

Institute for Software Integrated Systems,
Vanderbilt University

March 10, 2003 2

Outline

 Introduction
 Asynchronous I/O automata
 Structured sets and data ports
 Structural model of I/O automata
 Case study

 TinyOS: cooperative acoustic tracking
 Siesta: routing in vibration control simulation

 Conclusion

March 10, 2003 3

Networked Embedded Systems
Technology (NEST)
 Large volume fabrication of compact autonomous nodes
 Have limited resources and communication capabilities
 Large number of densely deployed processing nodes
 Tightly coupled to physical processes

March 10, 2003 4

NEST applications

 Equipment and process control
 Avionics

 Environment monitoring
 Pollution
 Chem/bio agent detection

 Target detection and classification
 Acoustic and seismic beamformation
 Target localization

 Smart structures
 Acoustic sensing
 Vibration control

March 10, 2003 5

NEST middleware

 Kind of distributed operating system that
provides global services to the application

 The middleware must be
 application specific
 programming language and platform specific
 highly configurable

 Currently, the middleware is written and
verified for each application and platform

March 10, 2003 6

Our approach

 Automatically synthesize
the middleware from
abstract models

 Capture the temporal and
computational aspects of
distributed algorithms in a
programming language and
platform independent way

 Focus on composition and
verification of middleware
components

March 10, 2003 7

Asynchronous I/O automata

 Mathematical specifications of distributed
algorithms

 Extensively used in the literature for the
formal representation, verification and
analysis of reactive systems [Lynch].

 Theoretical methods and results describing
the interaction and refinement of
asynchronous I/O automata.

March 10, 2003 8

The I/O automaton A

 states(A), a nonempty set of states
 start(A), a nonempty subset of states(A)
 acts(A), a set of actions, partitioned into three

sets: in(A), out(A) and int(A), the set of input,
output and internal actions

 trans(A), a state-transition relation, where
trans(A) ⊆ states(A)×acts(A)×states(A)

 tasks(A), a partition of out(A) ∪ int(A)

March 10, 2003 9

Execution of I/O automata

 The execution of A is a sequence s1, a1, s2, a2,
s3,… of states and actions such that s1 is a
start state, and (si, ai, si+1) are transitions of A

 I/O automata are input enabled: input actions
can occur in every state

 The execution order of locally controlled
actions is nondeterministic

March 10, 2003 10

I/O automata specifications in
practice
 States are described in terms of a list of state

variables and their initial values, that is, states(A) =
D1×…×Dn

 Actions are grouped into logically coherent action
groups, that is, acts(A) = G1 ∪… G∪ m

 Each action group is parameterized, described in
terms of action parameters:
Gi = Ei,1 ×…× Ei,p(i)

 Transitions are described in a mathematical pseudo-
code accessing state variables and action
parameters (preconditions and effects)

March 10, 2003 11

Focusing on structure

 The sets of states, actions and transitions are
naturally structured in practice

 The pseudo-code describing the transition
relation can be very complex and
nondeterministic

 We minimize the complexity of the pseudo
code by introducing more complicated
compositional operators of I/O automata

March 10, 2003 12

Structured sets and data
ports
 The following are structured sets

 The domains of basic datatypes
 Finite products of structured sets
 Disjunct unions of structured sets
 Finite powers of structured sets
 The Kleene star of structured sets

 We can formally define data ports of
structured sets that provide read and write
access to limited parts of the structured set.

March 10, 2003 13

Structural model of I/O
automata
 states(A) is a structured set
 acts(A) is a structured set
 in(A) and out(A) are data ports of acts(A)
 value(A), a data port of states(A)
 trans(A), only simple transitions are allowed:

 Preconditions: only simple comparisons
 Effects: only simple assignments

March 10, 2003 14

Compositional operators of
structural I/O automata
 Variable: most basic building block
 Activator: introduces new simple state-

transitions
 Product: composition of automata
 Union: alternative implementations
 Power: implements arrays
 Black Box: wrappers around existing

services

March 10, 2003 15

Case study: cooperative acoustic
tracking
 Running on the Berkeley mote platform and the

TinyOS operating system
 Two kinds of motes

 Active tags: sends radio and sound signal
 Trackers: receive radio and sound signal, compute time of

flight of the sound, estimate distance

 Track table middleware service: maintain a table of
all measurements at each tracker

 Based on the content of the track table, a local
algorithm computes the location of the tags

March 10, 2003 16

TinyOS overview

 The MICA and RENE
hardware platforms (University
of California, Berkeley)

 Event based operating
environment for embedded
networked sensors

 Two-level (non-preemptive)
scheduling: events and tasks

 Components: event and
command handlers, fixed
memory frames

 The operating system /
application is a collection of
statically linked interacting
components.

March 10, 2003 17

Generic Modeling Environment
(GME)
 Configurable toolkit for creating domain-

specific modeling and program synthesis
environment

 Configuration is through a (UML based)
metamodel specifying the syntactic, semantic
and presentation information of the domain.

 A graphical model builder is used to build
application models

 Domain specific synthesizers

March 10, 2003 18

Distributed Services Composition
and Synthesis Technology
(DISSECT)

March 10, 2003 19

Case study: vibration control

 Acoustic damping of vibration in a fairing
 SIESTA: simulator implemented in Java that

uses a simplified I/O automata-based
middleware

 We used the same modeling environment
(DISSECT) as before, but with a different
conde synthesizer

 We modeled the broadcast and routing
components

March 10, 2003 20

Conclusion

 It is possible to model distributed middleware
services in a platform nutral and
programming language independent way

 It is possible to automatically synthesize the
distributed middleware from generic models
using platform dependent code synthesizers

 Middleware service composition needs better
support: a lot of research is still to be done

	Distributed Middleware Services Composition and Synthesis Technology
	Outline
	Networked Embedded Systems Technology (NEST)
	NEST applications
	NEST middleware
	Our approach
	Asynchronous I/O automata
	The I/O automaton A
	Execution of I/O automata
	I/O automata specifications in practice
	Focusing on structure
	Structured sets and data ports
	Structural model of I/O automata
	Compositional operators of structural I/O automata
	Case study: cooperative acoustic tracking
	TinyOS overview
	Generic Modeling Environment (GME)
	Distributed Services Composition and Synthesis Technology (DISSECT)
	Case study: vibration control
	Conclusion

